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APPROXIMATE THEORY OF COMPRESSIBLE- 7. 1
AIR INFLOW THROUGH REED VALVES : .

FOR PULSE JET ENGINES .

"f .! ': ' ;. .d.

Paul Torda , I .' .

INTRODUCTION [4/-. I
The purpose of this paper is to present an approximate theory of compressible air inflow

between reed valves for pulce jet engines. The exact theory of the air intake process for

such engines wa.s developed and presented in two papers published under the sponsorship of Proj-

ect Squid (References I and 2). 1his exact analysis, however, involves laborious coirputations

and can not, at present, be used for the first assessment oi a new design, since, for such a

purpose, the number of numerical examples treated would have to be greatly enlarged. The pres-

ent shorter, even if less exact, analysis is well suited for use in the fixbt stage of a new

design. It might well be that the results obtained by the present method are sufficiently

accurate so that they can be used for design purposes without reverting to the exact analysis.

In the approximate theory the inertia effects of the fluid are neglected. This neglect

introd&&ces an error in the analysis. However, the magnitude of this error may be ascertained

by comparing the results obtained by the approximate theory with those obtained by the exact

theory.

In the present analysis the shapes of the reeds during mnvement are determined. This is

done by prescribing the forcing function in the differential equation of the forced reed motion

and integrating this equation. The inflow, at specific times, is treated as nozzle flow.

Velocity, pressure, and density distributions in the fluid are obtained from the nozzle analy-

sis. The method, without alteration, is applicable to the closing period of the valves as

well, but the forcing function for this period must be prescribed in agreement with the pres -

sure-time function during combustion. In tne pr-sent paper, however, for brevity only the

opening period of the reeds is treated.

A comparisoa of Lw reaults obtained with thoue of Lhe exact theory shows good qualita-

tive agreement and also good quantitative agreement in the early part of reed motion. The

variations of the results in the latter part of the period are due solely to the following

considerations:
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1. In the exact analysis, supersonic velocities appeared during inflow, but in the

approximate theory velocities above sonic were not admitted. V

2. In the numerical example, uaed for comparison from the exact theory, tapered reeds were

treated, whereas in the approximate theory, for the same example, constant moment of

inertia was assuaed for simplicity.

AIR INFLOW ANALYSIS

For the mathematical treatment of the problem some simplifying assumptions had to be

made.

Basic Assunptions. The following basic assumptions have been used in the analysis:

1. The flow upstream of the valves is assumed to be parallel to the valve center planes;

i.e., a short cowl of large diameter is assumed ahead of the valve bank, which is

built up of a large number of individual valves.

2. The quasi one-dimensional approach employed takes into account the time and space

variation of area, flow pressure, and flow velocity between the valves.

3. The analysis considers non-steady, compressible, non-viscous flow between a pair of

reed valves with isentropic change of state during inflow.

4. The approximation is introduced in assuaing the reeds frozen at particular times

during the period, at which times t.he inflow opening is treated as a nozzle. This is

equivalent to neglecting the inertia effects of the fluid.

5. Reeds are of constant thickness. This assumption is no-t necessary, but is introduc.ed

for simplification of the numerical computacions. .

The above assumptions make it possible to determine the pressure, velocity, and density

distributions between a pair of reed valves during inficv for a given geometric configuration

of the valves and a given or a desired pressure-time function in the combustion chamber.

Analysis. The reeds are considered as cantilever beans of known mass distribution and

elastic properties. The same method is applicable to hinged reeds as well, but for brevity,

this analysis was not carried out in tnis paper. If it is postulated that the pressure dif-

ference at the free ends of the reeds is to be zero at all times in order to minimize vortex

development, then the resultant pressure-force distribution along the reeds may be assumed to

be triangular, as shown in Figure 1. Any other distribution of the resultant pressure force

may be assumed, as well, without modifying the method presented here. In ordcr to uliminaite

vortex formation completely, it would be necessary to assure zero velocity difference, as well

as zero pressure difference, at the free ends of the reeds. It is not possible at present,

however, to introduce this modification into the analysis since no information on the velocity-

time function of the gases on the combustion chamber side of the reeds is available.
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1U magnitud of the pressure difference (,) at the entrance (clamped end, x 0) is a

time variable. In the non-hmnogeneous fourth order linear differential equation of the reed

deflections, the pressure difference function (A(X,t)) is the forcing function. This equation

can be solved by standard methods (e.g., Fef.3), once the nature of the forcing function is

prescribed. The solution of the above equation gives tue history oi the reed motion, and thtis

the reed shapes throughout the period are determined. Taking the reed shapes for specified

times, one may treat the inflow as a quasi one-dimensional nozzle flow (e.g., Ref. 4). The

continuity equation, the Bernoulli equatiJ•n, and the equation of the change of state of the

gas then make it possible to determine the inflow phenonena.

It is possible to postulate either the existence of only sonic and subsonic velocities,

or to include also supersonic velocities during inflow. Although in the exact method of solu-

tion, Refs. I and 2, supersonic velocities do appear, it is believed that because of frictional

and other losses, not included in the analysis, no such velocities will occur in actual cases.

For this reason, only velocities up to sonic tire admitted in the nozzle flow.

Basic Equations and Their Integration. The equation of forced motion of cantilever reeds

is:

V UI 2) Dtr =-- 1,t

where EI is the bending stiffness

m is the mass per unit length

a and n are the space variables along the reeds and perpendicular to them

t is the time variable

f(,'t) is the forcing function.

If m is constant, equation (1) way be written as:

1 84 1 2  (2)
HI'- + " -= f(= t) (2)

If the time variabl- load per unit length, tne forcing function, is given by:

f(Q,t) =- r(ý) e"t (3)

then equation (2) admits a solution of the form

Q(•,t) = 9(9) ewt (4)

and g(Q) must satisfy the equation

d + M. 2 r(ý) (5)
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sing th notation 2

Ing 4 MW (6)

d 4r 4

7r + 0 -- = f r(7)

The solution of the homogeneous equation, corresponding to equation (7), is

h(g) - e~ V 2A cos +] i oýý' +Dsný (8)

If r(l) is given, see Figure 1, by

a particular solutim of equation (7), is

k1 (4 (10)

and the general solution of equation (7) is

) h k() (1i)

11w boundary conditions to be satisfied by 9(9) are;

1. For• 0 9 (1) = 0 '

2. For• 0 ![L (g)--0
(12)

3. For -- d • [g(l)--

4. For -H d [g(E)] V0

From conditions (12), the four arbitrary constants of integration, A, B, C and D may be

determined. They are

A ( I+ MC

B =C - D + X2

C=2e-26 cos aRx, sin a + X, cos a•] + )X,(1 + (13)C"- (13)
i1 + Z e- * + + 4&e-•a C 0•2 a

D- [ + e-2L] + 2e"L sin a [X, sin a + X cos a]
1 + e-2e" + e +4e-2 co
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where

lhe equations describing the flow in a nozzle and thus between a pair of reeds at any

time (t) are:

The continuity equation is

ups -- 'n on sn (14)

The Bernoulli equation is

U2 -÷ u' +2kn (15)

The equation of isentropic change of state is

• -- -(16)

where

u is the tlow velocity

p is the fluid density

p is the fluid pressure

s is the cross sectional area between a pair of reeds

y is the adiabatic constant

- ~ )( ) is the enthalpy

subscript zero denotes stagnation conditions

subscript n denotes any specified station along the flow.

If the entrance section (x 0 0) is denoted by subscript 1 and if the following non-

dimensional variables are introduced

U P -- R -- $= -- (17)

two equatim1 result for the calculation of the inflow velocities (U) and the inflow pres-

sures (P)
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"J uI y-__ PAI ij PV is,:
2Y Po(, -

[u~ p v} + (18)

U1 (y-l) 0o 'P -

The relation between u, and p1 is given by

U: Zzi, (20)
-- 1 (- P)

From measured or desired pressure distribution, the pressure an the combustion chamber

aide of the reed valves, q, may be given as a function of time at a selected station, say at

the entrance X - 0. TLan a desired pressure variation on the intake side of the reeds p haa

to be prescribed at the sa& station X - 0 during the intake time. D1e choice of p my be

made from the consideration that, for efficient air intake, A a p - q, the presasre differonce

acting an the reeds uhodd be as large as possible during the opening and as sall as possible

during the closing tim of the valves. The general variation of p and q is drawn in Figure 2.

Thus, with the appropriate choice of P, - p1(t), the pressure P and velocity U functions dur-

ing intake my be determined from equations 16, 19, 2U and the density R variatiom from eqcr-'

tion 16, for the previously determined area ,, "-. iom S. The transformation from the -, ,

coordinates to the x,y coordinates my be dou -_aphically or analytically.

NL#iZIC4L EXAMPLE

The numerical example presented has been worked out for a case which has been treated in
the exact analysis (Ref. 1, Case 1, area ratio 3:1). The gecstric configuration of the val-

yes and the assimed mas distributions are presented in Figure 3. Figures 4, S, and 6 give

the reed deflections, the inflow velocity distributions and the inflow pressure distributions

respectively for both the exact and the approxiaate theories. Figure 7 shows the pressure dis-

tribution oan the combustion chamber side of the reeds for the approximate theory.

While comparing the results of the two theories it should le remmbered that the different

mas distributions assumed influence the instantaneous reed shapes at any corresponding time,

as can be seen from Figure 4. The stiffer valves will bend more towards their free end, while

the weaker valves more towards their clamped end. The fact should also be recalled that

in the exact theory supersonic velocities appeared. but in the approximate theory only velo-

cities up to sonic were admitted.
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(XaGCLLLSIONCS

SOnly a qualitative com.riaan of the approximte and exact theories could be achieved at
4tahis time. The reason for this is that, due to sudden termination of the contract, no time

w.s available for comprehenaive numerical computations. From the experience gained during'the

numerical work for both theories the conclusion can be drawn that the approximate theory will

furniah sufficiently accurate determination of the inflow Phenoaena and thus it may be used

for design purposes with confidence.
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REEDS CLAMPED
ALONG THESELINES•

F IGURE lI-

A pair of reeds.

FIGUR.E lb

Reed loading.
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